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Abstract

In this paper we describe the Image Fidelity Assessor (IF
a model of the human visual system designed to evalu
perceived fidelity. In particular, we describe the structu
of the model, present results from a contrast discrimin
tion experiment used within the model, and demonstra
preliminary results of the model. The IFA is designed t
be both physiologically and psychophysically plausible.
consists of a multichannel Gabor pyramid decompositio
The fidelity ateach spatial location within each channe
is evaluated based on psychometric functions. The p
chometric functions were determined experimentally an
describe the discrimination ability of the visual system a
a function of spatial frequency, orientation, and adaptati
level. Limited memory probability summation across th
visual channels is used to obtain a measure of perceiv
image fidelity. Preliminary results of the IFA are consis
tent with human evaluation of image fidelity.

1. Introduction

A number of models incorporating some type of frequen
selective channels have been proposed for image fide
assessment[1, 2, 3, 4, 5]. These models have made sig
icant progress towards attaining meaningful image fideli
assessments. They go far beyond simple mean-squared
ror, which is well-known to be unsatisfactory. Our wor
has been heavily influenced by these models and attem
to build on them.

In order to motivate our approach, we begin by consi
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ering some of the characteristics of these models. All o
these models depend on psychophysical data obtained
others. Frequently the task performed in the experimen
used to obtain model parameters is not directly related t
the function of the corresponding portion of the model. For
example, psychophysical experiments that determine th
contrast sensitivity function (CSF) in Daly's Visible Dif-
ferences Predictor[2] (VDP) lead to the relation between
contrast and percept, i.e. the probability of seeing a sin
grating at a particular frequency and contrast. However
the output of the CSF in the VDP is not treated as prob
ability. This means that this portion of the model is not a
model of percept. Other models share these characteristic
We have endeavored to take a more integrated approa
with the goal of having our model more closely match the
psychophysical experiments upon which it is based.

A number of physiological studies on cats and primates
have reported that mammalian visual systems contain ne
rons whose receptive fields closely resemble Gabor patch
[6, 7]. However, since Gabor decompositions are not or
thogonal, prior image fidelity assessment methods hav
preferred to decompose the image by sectioning the fre
quency domain into a number of pie pieces. On the othe
hand, Gabor decompositions have been used to addres
number of image understanding problems. Many textur
segmentation and classification techniques have relied o
Gabor decompositions[8]. The IFA differs from previous
image fidelity models in that it uses a a physiologically
plausible Gabor pyramid decomposition.

Another fundamental difference between the IFA and
its predecessors is founded on psychophysical grounds. W
7



e

h

ed
ri-
st
eu-
n.

el
d-

es

f
i-
ed
pri-
c
tly
on
ta-
-
he
e

sed
m-

ch
ric

t
to

n-
e
of
s-

e

s
in
or
nc-

est
er-
tch

IS&T’s 1998 PICS ConferenceIS&T’s 1998 PICS Conference Copyright 1998, IS&T
Ideal
Image

Rendered
Image

Image map
of predicted

visible
differences

Lowpass
Pyramid

Gabor
Wavelet

Psychometric
LUT

Psychometric
Selector

Channel 
Response 
Predictor

Lowpass
Pyramid

Gabor
Wavelet

Σ
+

-

Local
Contrast

Local
Contrast

Channel
Summation

Figure 1: Block diagram of the Image Fidelity Assessor.

the exception of the Sarnoff Model[5], prior image fidelit
measures implicitly assume that contrast detection and c
trast discrimination are equivalent[2, 3, 4]. In contrast d
tection experiments the subject is asked whether or not
stimulus is visible. In contrast discrimination experimen
the subject is asked to discriminate between two stim
In previous models the difference of the two contrast im
ages is computed just prior to the channel response p
dictor, and information about the contrast in the origin
images is lost. Then contrast detection thresholds are u
to predict their discriminability. These models discard i
formation about the absolute contrast levels in the imag
however, this discarded information is relevant to visib
ity thresholds. A masking calculation is required to com
pensate when detection thresholds are used. The IFA u
discrimination thresholds in order to obtain a more acc
rate estimate of image fidelity. We differ from the Sarno
Model in that we use contrast discrimination data that
specific to our modeling of the visual system.

2. Model

The IFA accepts two grayscale images as inputs and gen-
erates a probability map as output. The probability m
is a grayscale image that indicates the probability of a h
man observer detecting a difference between the two in
images. Figure 1 shows a block diagram of the IFA.
multiresolution decomposition is performed oneach im-
age to generate a number of channels, each containing
response of a particular receptive field. The receptive fields
are modeled by Gabor functions of varying frequency a
orientation. Significant effort has been expended by t
research community to create a more complete descrip
of the receptive fields of the neurons in the primary visu
cortex. The characteristics of the Gabor functions used
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our model follow those of Lee [9] and are motivated by th
work of many others.

The multiresolution pyramid is built by low pass fil-
tering and decimating the original image. We call eac
of these images thebase imagefor a particular pyramid
level. The base image for each pyramid level is convolv
with even and odd symmetric Gabor functions at eight o
entations. A local contrast calculation produces contra
images that describe the response of an ensemble of n
rons tuned to a particular spatial frequency and orientatio
We call these images thechannel imagesas they represent
different channels of the visual system. Sixteen chann
images are generated for five pyramid levels correspon
ing to fundamental frequencies of 16, 8, 4, 2, and 1 cycl
per degree.

The Psychometric Look Up Table (LUT) consists o
a family of psychometric functions that have been empir
cally determined by psychophysical experiments describ
in Sec. 3. The Psychometric Selector selects the appro
ate psychometric function from the family of psychometri
functions in the LUT. The selection is made independen
for each spatial location in each channel image. Selecti
of the psychometric function is based on the local adap
tion level, the fundamental frequency of the channel im
age, and the local contrast level in the channel image. T
local adaptation level is obtained by low pass filtering th
base image. The channel image for the ideal image is u
as a measure of the local contrast level in the channel i
age.

The difference between the contrast images for ea
channel is then applied to the appropriate psychomet
functions to produce a separate probability map foreach
channel. All of the probability maps from the differen
channels are combined in the channel summation stage
produce the final probability map. In this stage, the cha
nel probability maps from higher levels of the pyramid ar
upsampled to match the resolution of the lowest level
the pyramid. The probability maps are then combined u
ing a method we calllimited memory probability summa-
tion. The method uses probability summation to combin
the five largest visual channel responses ateach spatial lo-
cation.

3. Experiment

A psychophysical contrast discrimination experiment wa
designed to obtain the psychometric functions used with
the model. The stimuli used in the experiment were Gab
patches with the same characteristics as the Gabor fu
tions used in the channel decomposition of the IFA.

Each stimulus consisted of a reference patch and a t
patch displayed on either side of a fixation cross. The av
age luminance, frequency, and orientation for the test pa
8
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was always the same as that of the reference patch. T
reference patch had a fixed contrast while the test pa
varied in contrast. The stimuli were displayed on a ca
brated monitor with a peak luminance of 79 cd/m2. One of
the authors (CCT) with corrected to normal vision serve
as the subject in the experiment. For all but the two low
est frequencies tested, the subject's head was placed
headrest 2.0 m from the monitor. For the two lowest fre
quencies tested, the viewing distance was reduced to
m.

Within a session there were eight test patches, ea
with different contrast levels. Each contrast level was slig
above reference contrast. A fixation cross remained at
center of a uniform gray image throughouteach session.
The uniform gray image had the same luminance as the
erage luminance of the Gabor patches. In each trial the t
Gabor patches were presented at a horizontal eccentri
of 2.5 cycles to either side of the fixation cross. Each tri
was initiated by pressing the middle mouse button, whe
upon a 100 ms presentation of the trial stimulus followe
a 50 ms delay. Each test patch was presented 50 tim
The test patches were presented in random order, and
side of presentation for the test and references patches
randomized.

The subject was asked to indicate which patch (left
right) had higher contrast. Auditory feedback was pro
vided after each incorrect response. Cumulative Gaussian
distributions were fit to the results using probit analys
[10]. The standard deviation of each distribution was us
to estimate the discrimination thresholds. Discriminatio
thresholds were measured for Gabor patches with six f
quencies, eight orientations, five average luminance leve
and nine reference contrast levels. A portion of the expe
imental results are shown in Fig. 2. The figure contain
discrimination functions which consist of discrimination
thresholds plotted as a function of reference contrast.

It is apparent from the discrimination functions in Fig.
that discrimination and detection thresholds are not equ
alent. For if they were, all of the discrimination function
would be horizontal lines. The discrimination functions i
Fig. 2 reveal that discrimination thresholds and referen
contrasts are inversely related for subthreshold referen
contrasts and directly related for suprathreshold referen
contrasts. This observation, often referred to asfacilita-
tion or thedipper effect, is consistent with the results of
previous experiments on sinewave stimuli. The minimu
discrimination threshold occurs when the reference co
trast is near the detection threshold (this contrast detect
threshold is measured in a contrast discrimination expe
ment with the reference contrast equal to zero). For exa
ple, consider the contrast discrimination function for th
2.0 c/deg Gabor patch in Fig. 2. The minimum for thi
curve occurs at a reference contrast of 2% which is clo
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Figure 2: Discrimination thresholds for vertically oriented Ga
bor patches with spatial frequencies of 1.0, 2.0, 4.0, 8.0, 16
and 27.0 c/deg with an average luminance level of 40 cd/m2.

to the discrimination threshold when the reference contr
is zero.

It is interesting to note that all of the curves in Fig.
converge as the reference contrast is increased. In f
for all but a few Gabor patches studied, the discrimin
tion thresholds are near 10% when the reference patc
at 64% contrast. This implies that contrast discrimin
tion is approximately insensitive to frequency variation
in suprathreshold contrast regions. This effect has b
referred to ascontrast constancyand has been widely ob-
served for suprathreshold contrasts[11, 12]. In additio
the increasing portion of the discrimination functions
linear on a log-log plot. The slopes of the linear po
tion of the discrimination functions obtained by the ex
periment range from 0.6 to 0.9. This range of slopes
within the range of slopes reported by others[13, 14, 1
16]. Although discrimination functions for luminance an
orientation variations are not shown here, the visual s
tem exhibited little sensitivity to orientation for all refer
ence contrasts and little sensitivity to average luminan
for suprathreshold reference contrasts. For subthresh
reference contrasts, discrimination thresholds increase
average luminance decreased.

4. Results

In this section we present two examples of image fidel
predictions generated with the IFA. Light areas of the IFA
output probability map correspond to image regions w
high likelihood of visible distortions while dark areas co
respond to image regions with low likelihood of visibl
9
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distortions. Figure 3 contains an example of the IFA a
plied to an image distorted by Adobe Photoshop's “cry
tallize” algorithm. Figure 4 contains an example of th
IFA applied to an image distorted by median filtering.
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Figure 3: (a) Original image, (b) Image distorted by Adobe Ph
toshop's “crystallize” algorithm, (c) IFA image fidelity predic-
tion.
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(b)

(c)
Figure 4: (a) Original image, (b) Image distorted by median fi
tering, (c) IFA image fidelity prediction.
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