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Abstract ering some of the characteristics of these models. All of

. . - hese models depend on psychophysical data obtained by
In this paper we describe the Image Fidelity Assessor (IFA thers. Erequently the task performed in the experiment

a model of 'the'human V|§ual system des'|gned 0 evaluatﬁzsed to obtain model parameters is not directly related to
perceived fidelity. In particular, we describe the structure ; : )

...~ the function of the corresponding portion of the model. For
of the model, present results from a contrast dlscrlmlnaéxam le. psvchophvsical experiments that determine the
tion experiment used within the model, and demonstrate p'e, psychophy P

preliminary results of the model. The IFA is designed tocontrast sensitivity function (CSF) in Daly's Visible Dif-

be both bhysioloaically and psvehophysically plausible Itferences Predictor[2] (VDP) lead to the relation between
th phy gically psychophysically p .. _contrast and percept, i.e. the probability of seeing a sine
consists of a multichannel Gabor pyramid decomposition,

- . . o grating at a particular frequency and contrast. However,
The fidelity ateach spatial Iocatlon.wr[hm gzach channel the output of the CSF in the VDP is not treated as prob-
is evaluated based on psychometric functions. The ps

chometric functions were determined experimentall anzéb”ity' This means that this portion of the model is not a
P Y 8N odel of percept. Other models share these characteristics.

descnpe the d|scr|m|nat|on ab'“ty of th.e visual system 23We have endeavored to take a more integrated approach
a function of spatial frequency, orientation, and adaptation

level. Limited memory probability summation across thevmh the goal of having our model more closely match the

visual channels is used to obtain a measure of perceivel%S ychophysical expe'rlmer}ts upon which itis based'.

. o e g A number of physiological studies on cats and primates
image fidelity. Preliminary results of the IFA are consis- . : :

tent with human evaluation of image fidelity. have reported that mammalian visual systems contain neu-

rons whose receptive fields closely resemble Gabor patches
[6, 7]. However, since Gabor decompositions are not or-
1. Introduction thogonal, prior image fidelity assessment methods have
preferred to decompose the image by sectioning the fre-
A number of models incorporating some type of frequencyquency domain into a number of pie pieces. On the other
selective channels have been proposed for image fidelitgand, Gabor decompositions have been used to address a
assessment[1, 2, 3, 4, 5]. These models have made signitumber of image understanding problems. Many texture
icant progress towards attaining meaningful image fidelitysegmentation and classification techniques have relied on
assessments. They go far beyond simple mean-squared &abor decompositions[8]. The IFA differs from previous
ror, which is well-known to be unsatisfactory. Our work image fidelity models in that it uses a a physiologically
has been heavily influenced by these models and attempggausible Gabor pyramid decomposition.
to build on them. Another fundamental difference between the IFA and
In order to motivate our approach, we begin by consid-its predecessors is founded on psychophysical grounds. With
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PsycranTwetric our model follow those of Lee [9] and are motivated by the
work of many others.
o ' : The multiresolution pyramid is built by low pass fil-
" |Pycfometiicl tering and decimating the original image. We call each
Ideal Lowpass|| | Gabor of these images thbase imagdor a particular pyramid
Image ~>] Pyramid [[™| wavelet _: el v level. The base image for each pyramid level is convolved
o * > g;"[‘]'(‘;r‘]‘;'e with even and odd symmetric Gabor functions at eight ori-
_|_>—> Local | - Predictor gzntations. A Iocal' contrast calculation produces contrast
ng:d_, Lowpass|[ o | Gabor | o | contrast * images that describe the response of an ensemble of neu-
Pyramid| ™| Wavelet rons tuned to a particular spatial frequency and orientation.
S&ﬂf‘n”;idon We call these images tlohannel imageas they represent
v different channels of the visual system. Sixteen channel
Image map images are generated for five pyramid levels correspond-
of predicted ing to fundamental frequencies of 16, 8, 4, 2, and 1 cycles
differences per degree.
Figure 1 Block diagram of the Image Fidelity Assessor. The Psychometric Look Up Table (LUT) consists of

a family of psychometric functions that have been empiri-
cally determined by psychophysical experiments described

the exception of the Sarnoff Model[5], prior image fidelity in Sec. 3. The Psychometric Selector selects the appropri-

measures implicitly assume that contrast detection and cofite psychometric function from the family of psychometric

trast discrimination are equivalent[2, 3, 4]. In contrast de_functions in the LUT. The selection is made independently

tection experiments the subject is asked whether or not thfé;r EaCh spﬁtial Ioga;[cion if‘ e"’?"h channel image. Selection
stimulus is visible. In contrast discrimination experiments® the psychometric function is based on the local adapta-

the subject is asked to discriminate between two stimulitlon level, the fundamental frequency of the channel im-

In previous models the difference of the two contrast im-29€, and the 'Iocal con'trast Ieyel in the channel 'ima.ge. The
ages is computed just prior to the channel response pr(%_)cal gdaptatlon level is ol?talned by Iow pass fllterlqg the
dictor, and information about the contrast in the original ase image. The channel image for the |Fieal Image 1 u.sed
images is lost. Then contrast detection thresholds are usép a measure of the local contrast level in the channel im-
to predict their discriminability. These models discard in-29¢€: ) ,

formation about the absolute contrast levels in the images; 1€ difference between the contrast images for each
however, this discarded information is relevant to visibil- channel is then applied to the appropriate psychometric
ity thresholds. A masking calculation is required to com-functions to produce a separate probability mapefach
pensate when detection thresholds are used. The IFA us§fannel. Al of the probability maps from the different
discrimination thresholds in order to obtain a more accu-channels are combined in the channel summation stage to
rate estimate of image fidelity. We differ from the Sarnoff Produce the final probability map. In this stage, the chan-
Model in that we use contrast discrimination data that ig'€! Probability maps from higher levels of the pyramid are
specific to our modeling of the visual system. upsampled to match the resolution of the lowest level of
the pyramid. The probability maps are then combined us-
ing a method we calimited memory probability summa-
tion. The method uses probability summation to combine

. . the five largest visual channel responsesaath spatial lo-
The IFA accepts two grayscale images m@glits and gen- cation

erates a probability map as output. The probability map

is a grayscale image that indicates the probability of a hu-

man observer detecting a difference between the two input 3. Experiment

images. Figure 1 shows a block diagram of the IFA. A

multiresolution decomposition is performed each im- A psychophysical contrast discrimination experiment was
age to generate a number of channels, each containing tlgesigned to obtain the psychometric functions used within
response of a particulagceptive field. The receptive fields the model. The stimuli used in the experiment were Gabor
are modeled by Gabor functions of varying frequency andpatches with the same characteristics as the Gabor func-
orientation. Significant effort has been expended by thdions used in the channel decomposition of the IFA.
research community to create a more complete description Each stimulus consisted of a reference patch and a test
of the receptive fields of the neurons in the primary visualpatch displayed on either side of a fixation cross. The aver-
cortex. The characteristics of the Gabor functions used imge luminance, frequency, and orientation for the test patch

2. Model
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was always the same as that of the reference patch. 71 100
reference patch had a fixed contrast while the test pat
varied in contrast. The stimuli were displayed on a cal
brated monitor with a peak luminance of 79 cd/r®ne of
the authors (CCT) with corrected to normal vision serve
as the subject in the experiment. For all but the two low
est frequencies tested, the subject's head was placed
headrest 2.0 m from the monitor. For the two lowest fre
guencies tested, the viewing distance was reduced to .
m.

[ w
o o
T T

I

w
T

ast discrimination threshold (%)

Within a session there were eight test patches, eas 27 cldeg

with different contrast levels. Each contrast levelwas slig©® | toaed
. . . c/ae
above reference contrast. A fixation cross remained at t o 4C,de§
center of a uniform gray image throughas#ch session. -~ 2cldeg
—— 1cl/deg

The uniform gray image had the same luminance asthe: , ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
erage luminance of the Gabor patches. In each trial the t 00 08 A encetonwastiwy o0 %40
Gabor patches were presented at a horizontal eccentriCiggure 2 Discrimination thresholds for vertically oriented Ga-

of 2.5 cycles to either side of the fixation cross. Each trial,q, patches with spatial frequencies of 1.0, 2.0, 4.0, 8.0, 16.0,
was initiated by pressing the middle mouse button, wherezng 7.0 c/deg with an average luminance level of 40 &d/m

upon a 100 ms presentation of the trial stimulus followed

a 50 ms delay. Each test patch was presented 50 times.

The test patches were presented in random order, and the o

side of presentation for the test and references patches wi the discrimination threshold when the reference contrast

randomized. IS zero.

e subjct was asked o st which pach eftor, | [* II000 0 1te 1t of e v 7 2
right) had higher contrast. Auditory feedback was pro- 9 j '

vided after each incorrect nrggsnse. Cumulative Gaussian Iicz)rnatlﬁlrt;lgthilgi\/\;riibeoe:r pl?;;hsvsh:;u?kllidr,e;z?eglzsecnrgtlgr? -is
distributions were fit to the results using probit analysis 0 P

[10]. The standard deviation of each distribution was use(f[ 64% contrast. This implies that contrast discrimina

to estimate the discrimination thresholds. Discrimination; " "> approximately insensitive to frequency variations

thresholds were measured for Gabor patches with six fren suprathreshold contrast regions. This effegt has been
guencies, eight orientations, five average luminance Ievelsrngr?/rersdf;? zfogtrﬁrsetschoor;jtigﬁ?rr;itzas fi;r]] Wllr?i%c?ig;)n
and nine reference contrast levels. A portion of the exper: P ' ' '

imental results are shown in Fig. 2. The figure containﬁt.he |ncreaS|r|19 plort|0r|1 ?f t_lk_‘ﬁ dlsicnmlna;[ut)rr: fl:.nctlons 'S
discrimination functions which consist of discrimination In€ar on a '0g-10g piot. € siopes of the linear por-

thresholds plotted as a function of reference contrast. t'on. of the discrimination functions pbtalned by the ex:
periment range from 0.6 to 0.9. This range of slopes is

Itis apparent from the discrimination functionsin Fig. 2 yithin the range of slopes reported by others[13, 14, 15,
that discrimination and detection thresholds are not equivy ). Although discrimination functions for luminance and
alent. For if they were, all of the discrimination functions qientation variations are not shown here, the visual sys-
would be horizontal lines. The discrimination functions in tam exhibited little sensitivity to orientation for all refer-
Fig. 2 reveal that discrimination thresholds and referencgnce contrasts and little sensitivity to average luminance
contrasts are inversely related for subthreshold referencg,. syprathreshold reference contrasts. For subthreshold

contrasts and directly related for suprathreshold referencgsterence contrasts, discrimination thresholds increased as
contrasts. This observation, often referred tdaslita-  ayerage luminance decreased.

tion or thedipper effectis consistent with the results of

previous experiments on sinewave stimuli. The minimum

discrimination threshold occurs when the reference con- 4. Results

trast is near the detection threshold (this contrast detection

threshold is measured in a contrast discrimination experitn this section we present two examples of image fidelity
ment with the reference contrast equal to zero). For exampredictions generated with the IFA. Light areas of the IFA's
ple, consider the contrast discrimination function for theoutput probability map correspond to image regions with
2.0 c/deg Gabor patch in Fig. 2. The minimum for this high likelihood of visible distortions while dark areas cor-

curve occurs at a reference contrast of 2% which is closeespond to image regions with low likelihood of visible
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distortions. Figure 3 contains an example of the IFA ap-
plied to an image distorted by Adobe Photoshop's “crys-
tallize” algorithm. Figure 4 contains an example of the
IFA applied to an image distorted by median filtering.
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